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We have calculated the mobility and resistivity functions for two equal-sized 
cylinders moving in a thin viscous sheet surrounded by a lower-viscosity fluid. These 
functions describe the hydrodynamic interactions between proteins embedded in a 
lipid bilayer surrounded by an aqueous solution. For a protein of radius a embedded 
in a biological membrane of thickness h and viscosity p, a key parameter h = ph/up’, 
which characterizes the viscosity ratio between the bilayer and surrounding solution, 
is O(100). The method of solution for the hydrodynamic interactions differs 
depending on the separation distance, r ,  between the cylinders. When r = O(a) ,  the 
particles are in the near-field regime, and the solution of the Stokes equations is 
divided between an inner and outer domain based on the asymptotically large value 
of A. The inner solution neglects the flow in the lower-viscosity fluid and is solved 
numerically using a bipolar expansion. The outer solution is based on the fluid flows 
in all phases, but the cylinders are approximated by net forces. When r % O(a), the 
particles are in the far-field regime, and we use the method of reflections to solve for 
the hydrodynamic interactions. The uniformly valid approximations, constructed 
from a combination of the near-field and far-field solutions, agree with the analytic 
solutions obtained within the lubrication and far-field regimes. Our results show that 
the hydrodynamic interactions between the cylinders are long range, operating on a 
lengthscale of O(h).  The range of the hydrodynamic interactions is much longer than 
that of non-hydrodynamic interparticle forces, suggesting that hydrodynamic 
interactions will be significant determinants of the structure and dynamics of 
biological membranes. 

1. Introduction 
The translation and rotation of cylinders in a thin viscous sheet surrounded by 

lower-viscosity fluid is an appropriate model for the study of the motion of integral 
membrane proteins in biological and artificial membranes (Saffman 1976 ; Saffman & 
Delbruck 1975; Hughes, Pailthorpe & White 1981). This model captures the essential 
features of the protein-membrane system sketched in figure 1 .  Many integral 
membrane proteins have transmembrane domains composed of hydrophobic a- 
helices with a combined cylindrical radius of u and hydrophillic globular domains 
which reside in the aqueous phase on either side of the membrane. The a-helical 
domains of the proteins are stabilized by a large number of hydrogen bonds which 
resist deformation (Schulz & Schirmer 1979). The membrane, which consists of lipid 
molecules, has a viscosity p and a thickness h. The viscosity of the surrounding phase 
is p‘. Strong thermodynamic forces separate the hydrophobic and hydrophillic 
domains and restrict the protein and lipid molecules from moving perpendicular to 
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FIGURE 1. Cross-section of a typical biological membrane containing proteins and lipid molecules. 
The protein molecules have two regimes: a cylindrical core passing through the membrane and 
globular portions residing in the surrounding fluid. 
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FIGURE 2. Membrane cross-section showing inner and outer domains. The inner domain includes 
only the membrane, while the outer domain includes all phases. Within the intermediate domain, 
both the inner and outer solutions are valid. 

the plane of the membrane. Furthermore, p/p' is typically O(100) for biological 
systems, and we can neglect the drag of the surrounding phase on the proteins 
because p' < p. The proteins, therefore, can be approximated as cylinders in a thin 
viscous sheet. The Reynolds number for the disks based on a and ,u is O(lO-*). 

This problem was first studied by Saffman (1976) for an isolated cylinder. A review 
of this work is instructive because many of the results apply to the study of the two- 
cylinder problem. The rotational problem for an isolated cylinder is straightforward 
because a convergent solution results when the fluid dynamics in the low-viscosity 
surrounding phase are ignored. Saffman found that 

where b, is the rotational mobility, defined as the steady angular velocity produced 
by a steady unit torque. 

The translational problem, in contrast, is ill-posed when the fluid dynamics of the 
surrounding phase are ignored because of Stokes paradox. In  order to overcome this 
difficulty, Saffman divided the solution of the problem into an inner and outer regime 
as illustrated in figure 2. The inner solution, which ignores the surrounding phase and 
is valid for radial distances r = O(a),  is 

b, = (4npu2h)-', (1) 

where F is the absolute value of the force of the disk on the fluid, p = r /a ,  0 is the 
angle measured from the axis defined by the direction of motion, and U is the 
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absolute value of the velocity of the cylinder. The inner solution does not satisfy the 
boundary condition which requires that ur + O  as p+ co. At this stage, U is 
undetermined. 

To determine the velocity U,  the above inner solution must be matched to an outer 
solution which satisfies the last boundary condition. In order to calculate the outer 
solution, Saffman & Delbruck (1975) considered separately the effects of the 
surrounding phase and the finite extent of the membrane. The drag exerted by the 
surrounding phase becomes significant at large p and causes the velocity field to 
decay. The drag per unit area exerted by the surrounding phase on a circular area of 
radius r around the cylinder is O(p’U/r). The divergence of the stress within the 
membrane is O(phV2u) x O(phU/r2). These stresses are of the same order at a radial 
distance r x O(ph/p’), which is O(1OOa) for protein-membrane systems. The finite 
extent of the membrane becomes important to the translational mobility only if its 
radius is equal to or smaller than this lengthscale, which is not the case for biological 
membranes. 

The outer solution, valid for r $ a ,  involves the fluid dynamics in all phases 
resulting from a point force disturbance in the sheet. The velocity in the membrane 
obtained from the outer solution is 

where J ,  and J, are Bessel functions of the first kind of order zero and two, 
respectively, and R = rp‘/ (hp) .  

The two solutions are matched in the intermediate regime where both solutions are 
valid, yielding 

(4) lim (Ur)inner = lim (Ur)outer. 
P W  R+O 

In the limit as R+O, ( 3 )  becomes 

I’ 
u, = cos 6 - [  -In ( p )  +In ( A )  +i- y ] ,  

4nph 

where h = p/R = (ph/ap’) and y is Euler’s constant. The criterion which emerges 
from the match is 

The match between the two solutions depends upon A ,  and the error in the outer 
solution introduced by the point-force approximation is O(A-”). The solution for a 
single particle contains no dipole term, which is O(p-’) in the inner solution, so this 
error estimate is based on the neglected quadrupole term, O ( P - ~ ) ,  evaluated at 
r = ph/p‘ .  The right-hand side of (6) is the translational mobility, b,, which is defined 
as the velocity produced by a unit force. 

The results derived by Saffman are successful in predicting both D, and D,, the 
translational and rotational diffusion coefficients, respectively, at low protein 
concentration (Peters & Cherry 1982 ; Vaz, Goodsaid-Zalduondo & Jacobson 1984). 
On the other hand, the Saffman results fail to predict D, and D, as protein 
concentration increases because protein-protein interactions become important (Vaz 
et aE. 1984). 

Previous treatments of protein diffusion a t  higher concentrations have included 
potential energy interactions and/or excluded volume effects while neglecting 
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FIGURE 3. Schematic detailing the coordinate system for the calculation of the inner solution. The 
origin is located midway between the two disks, and both cylindrical and Cartesian coordinates are 
used. 

hydrodynamic interactions (Abney, Scalettar & Owicki 1989; Pink, Laidlaw & 
Chisholm 1986; Saxton 1987). They have been successful at  predicting some of the 
experimental trends, but they fail to capture all of the physics of the problem. These 
methods predict qualitatively how D, decreases with protein area fraction but fail to 
quantitatively match the data (Saxton 1987). The large lengthscale for the velocity 
disturbance calculated for an isolated particle suggests hydrodynamic interactions 
between proteins will be important even at  low concentrations and may help account 
for the discrepancy between experimental measurements and current theoretical 
predictions. 

The objective of this paper is to determine the hydrodynamic interactions which 
exist between two equal-sized cylinders in a thin viscous sheet surrounded by a 
lower-viscosity fluid as a model system for elucidating hydrodynamic interactions 
between proteins in membranes. These interactions are succinctly tabulated by the 
resistivity and mobility matrices, represented as R and M, respectively (Brenner & 
O'Neill 1972; Kim & Karrila 1991). The matrices are the linear relations between the 
rigid-body motions of the cylinders and the forces and torques exerted by the 
cylinders on the fluid. The linearity of these relations is valid because the fluid 
dynamics are governed by Stokes equations in both the membrane and the 
surrounding fluid. 

The elements of the mobility matrix relate the motions of the cylinders to the 
forces and torques which they apply to the fluids. This relationship is summarized 
below, 

I 

= M  

where we have used the coordinate conventions detailed in figure 3, superscripts 
identify the cylinder number, subscripts identify direction, and L is torque. The 
coordinate vectors are scaled with a ,  and the gap width, E ,  is equal to lp(1)-p(2)l-2. 
Because the proteins are restricted to motions in the plane of the membrane, their 
torque and angular velocity are represented by a single scalar component in the x,- 
direction. The resistivity matrix, the inverse of M, relates the force and torque 
exerted by the cylinders on the fluids to the cylinder motions. 

Both M and R are 6 x 6 matrices with 36 components, but the reciprocal theorem 
of Lorentz (1907) and the symmetry of the problem reduce the number of 
independent scalars in both matrices. The reciprocal theorem can be used to show 
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that M and R are symmetric, reducing the number of independent scalars from 36 
to 21. The symmetry of the two-cylinder geometry further reduces the number of 
independent scalars in M and R to 8. Thus, M takes the form 

a O O b O  0 

(8) 

O f  h O - d  g 

Conversion between M and R is straightforward because each is a scalar matrix, 
and M = R-l. The resistivity matrix is 

0 B 0 0 -  
O C D O E  F 
O D  G O - F  H 

0 A 0 0 
O E - P O  C --D 
O F  H 0 - D  G 

(9) 

The relationships between the components of R and M are given in Appendix A. 
In  order to solve for the components of R and M when 8 is 0(1), we use the same 

approximations as Saffman (1976) to divide the problem into an inner and outer 
solution. When E 4 1, we use the method of reflections. We combine these solutions 
into a uniformly valid approximation which conforms to the lubrication and far-field 
asymptotes, each of which is analytically accessible. 

2. Method 
In this section we present the method for calculating the hydrodynamic 

interactions between two equal cylinders immersed in a thin viscous sheet surrounded 
by lower viscosity fluid. The Reynolds number is small so that the fluid motion is 
governed by Stokes equations. There are two regimes, a near-field and a far-field 
regime, for the solution based on lp(l)-p(z)l, the separation distance between the two 
particles. When = O(a),  the particles are in the near-field regime, and the 
hydrodynamic interactions between the particles are both strong and dominated by 
the membrane. For this case, the problem of determining the fluid velocity is divided 
into inner and outer domains based on the large viscosity ratio between the thin 
sheet and the surrounding fluid. The inner problem satisfies the boundary conditions 
on the cylinders and ignores the hydrodynamics in the surrounding fluid. It is a two- 
dimensional problem and is solved using a twin-pole expansion technique (Sangani 
& Yao 1988). The outer problem satisfies the boundary conditions at infinity and 
approximates the cylinders as a single point force. I ts  solution is identical to the one 
derived by Saffman (1976) for the one-particle problem. The two solutions are 
matched in order to obtain the final result. 

When Ip(1)-p(2)( 4 O(a),  the particles are in the far-field regime, and the 
hydrodynamic interactions are logarithmically weak. A t  large separations, the 
interactions between the particle motions are no longer dominated by the membrane. 
Rather, they are controlled by the fluid dynamics in all phases. They are calculated 
using the method of reflections (Kim & Karrila 1991) based on the outer solution. 
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2.1. Near-jield solution, inner problem 
We solve the inner problem with a numerical technique which expands the fluid 
velocity in the fundamental solutions for Stokes flow in two-dimensions (Sangani & 
Yao 1988). The velocity field is a function of the fundamental solution, and all its 
derivatives, expanded about the centre of each disk. However, our problem has a 
different fundamental solution than the problem addressed by Sangani & Yao. They 
were interested in N particles with periodic boundary conditions, while we are 
interested in a non-periodic solution with two cylinders. 

The velocity within the inner domain of the membrane satisfies Stokes equations. 
We solve these equations using dimensionless variables (indicated with overbars). 
Distances are scaled with a. We have arbitrarily chosen to scale the equations with 
force or torque. Taking 2 to be a general driver, either F or Lla,  u = Z/(h,u)ii  and 
p = Z/(ha)p,  where u is the dimensional fluid velocity and p is the pressure. Thus, 

v=n = vp, (10) 
Stokes equations become 

and, v-P = 0. (11)  
The governing equations are conveniently written in terms of the dimensionless 
stream function, Y, and vorticity w ,  and become 

v2w = 0, V 2 Y  = - w .  (12% b )  
We expand w in the fundamental solution of Laplace's equation, 

(13) 
1 

G - -1n (p-p(%)) ,  
- 27c 

V2Gl = 6 ( p - ~ ' ~ ' ) .  where G, satisfies, 

The vorticity takes the form 

The stream function, Y, is expressed as a sum of the homogeneous and particular 
solutions to (12 b ) .  The homogeneous solution is similar to the expression for w ,  and 
the particular solution is expanded in terms of G,. The function G, replaces S,  used 
by Sangani & Yao and satisfies the following equation: 

V2G, = -Gl.  (16) 
The expression for G, is, 

G, = - --P, [In (p-p'n))  - 11. 
27c 

Thus, 

a1 
0 0 1  

Y = c , 2 , - ~ , 2 ~ +  Bg)G,(p--p'"))+[C 1-1 m-0 c (az,)l-m [A!: G2(P-P'n') 
n-1 , {  

+BE G,(P-P)l]}, (18) 

where the coefficients, AfZ and Biz ,  are determined by the boundary conditions, and 
c1 and c,  are determined by matching to the outer solution. In Appendix B, we give 
concise expressions for the derivatives of G, and G,. 
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The two components of the fluid velocity, a1 and G ~ ,  result from differentiating Y, 
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Substituting these results into Stokes equation, (lo), we find p, 

The boundary conditions are easiest to apply using the resistivity formulation 
because the disk velocities are given by integral equations over the surfaces of the 
disks. The no-slip boundary conditions are 

1 E(p) eize dB = C, on (21) 

where a D n )  is the surface of disk n. The boundary condition, C,, equals the linear 
velocity for 1 = 0 ,  equals i(m) ( l - i )  for 1 = 1,  and equals zero for I >  2. In  the 
integration of (21), the series for a(p) is truncated at 1 = L,,, in order to obtain a 
finite system of equations. This results in 2(4Lm,,+2) equations in 2(4L,,,+ 1) 
unknowns. However, of the four equations for 1 = 1 ,  only three are linearly 
independent, and one can be discarded. This is a consequence of the stream-function 
formulation which automatically satisfies the continuity equation. The value of L,,, 
is systematically increased until the desired accuracy is attained. 

The integral in (21) is evaluated in two parts. The first part involves terms 
expanded around disk n, and the second part involves terms expanded around the 
other disk. The terms in the latter integral must be transformed into multipoles 
centred at disk n. In  Appendix C ,  we restate the theorems governing this 
transformation (Sangani & Yao 1988). Finally, orthogonal properties of sine and 
cosine are used to evaluate the coefficients, A12 and Biz .  

The forces and torques exerted by the disks on the fluid are 

where a V n )  is the volume of disk n. The dimensionless stress tensor is 

and the derivatives of the stress tensor are 



686 

and 

S.  J .  Bussell, D .  L. Koch and D .  A .  Hammer 

Substituting (24) into (22), we find 

jip) = A!:), j7p) = -A!;), E(n) = - 2 p )  + ~ ( n ) .  
00 20 

Results for iT1 and a2, a t  this point, are only known to within the constant 
c1 and c2 ,  except for cases without a net force, for which both constants equal zero. 
For cases involving a net force, the constants are determined by matching the inner 
solution to the outer solution. 

2.2. Near-Jield solution, outer problem and matching 
The outer problem for two cylinders separated by an O(a) distance is identical to that 
for a single cylinder (Saffman 1976) because, in both cases, only the net force is 
important. Therefore, the outer solution is given by (3). 

Because the outer solution is identical for the single- and dual-cylinder situations, 
the matching criteria to  determine c1 and c2 are analogous to the one used for a single 
cylinder, provided that we do the matching using the mobility formulation. If we 
matched the two solutions using the resistivity formulation, however, the cylinder’s 
velocities would be both an input, as boundary conditions, and a output in the 
matching procedure. This would necessitate an extra iteration to fix some of the 
components of R.  Thus, the matching is easiest to apply to the elements of the 
mobility tensor because the forces and torques, the boundary conditions in this 
formulation, are independent of the matching procedure. The matching, therefore, 
simply fixes the values of a1 and ti2. We find 

P 
c =-[ (,) In ( A )  -71, 
It 47c 

where 4,) is the net force in the x,-direction, and n = 1 or 2. The error introduced 
by replacing the cylinders with a net force in order to  calculate the outer solution is 
O(h-l) ,  in contrast to  the O ( P )  error for the single-particle problem, because the 
dipole term is now the lowest neglected term which contributes to the solution. I n  the 
results section, we vary h from 100 to  750, with 250 being a typical value found in 
biological systems. 

2.3. Far-jield solution 

The method just described applies well for gap widths, G, of O(1) and is therefore a 
near-field solution. As the value of E becomes O(A) ,  however, neglecting the fluid 
dynamics in the surrounding phase in the calculation of the inner solution introduces 
significant errors. We calculate a far-field solution by again exploiting the large value 
of A. We use the method of reflections in the same way that i t  is applied to two 
spheres separated by a large distance (Kim & Karrila 1991). Because h is O( loo), we 
need only include the first reflection in the calculation. 

We calculate the far-field results using the mobility formulation, and the reasons 
for this choice will become clear later. The zeroth-order solution for the cylinder 
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velocities, (O)U, is given by the independent application of (6) to each cylinder and is 
O(ln A) .  The mutual presence of the cylinders, however, alters their velocities through 
the transmission of velocity disturbances. The velocity disturbances are calculated 
using the outer solution for a single cylinder, (3), since the cylinders are at a large 
separation distance. The integral in (3) is evaluated numerically. At E of O(A) and 
zeroth order, the velocity disturbance, ( O ) U I ~ _ ~ ,  is O( 1).  The first reflection evaluates 
the effect of the zeroth-order velocity disturbances on each cylinder. The first-order 
disturbance of the cylinder velocities, ( l )U,  is ( O ) U [ ~ - ~ ,  which we already know is O( 1 ) .  
This is the point at which we truncate our calculation of the far-field solution. 
However, we continue the procedure in order to estimate the errors introduced by 
neglecting the higher-order terms. The stresslet, S, is the lowest pole affected by the 
velocity disturbances because the force and torque on each disk are set by the 
boundary conditions. The first-order stresslet, proportional to V(O)U~~=~,  is O(A-'), and 
it creates a first-order velocity disturbance equal to ( ~ ) S [ ( E  + 2)-']1,-,) which is O(AP2).  
The second-order disturbance of the cylinder velocities, (')U, is which is O ( X 2 ) .  
In a like manner, we find that each successive cylinder velocity disturbance decreases 
by O(A-2) relative to the previous one. 

For comparison we have also estimated the strength of the reflections using the 
resistivity formulation. The zeroth-order solution for the cylinder forces, (O)F, is, as 
above, given by the independent application of (6) to each cylinder and is O(ln-' A ) .  
A t  E of O(A)  and zeroth order, the velocity disturbance, (O)UI,+ is also O(ln-' A).  The 
first-order disturbance of the cylinder forces, (l)F, is O(ln A )  smaller than ( o ) ~ l c - A  or 
O(ln-' A ) .  Continuing the procedure, each successive cylinder force disturbance 
decreases by O(ln-' A )  relative to the previous one. The neglect of second- and higher- 
order reflections in the resistivity formulation introduces O(ln-' A )  relative errors 
instead of the O(A-') errors in the mobility formulation. Therefore, the mobility 
formulation is more precise for the calculation of the far-field solution. This is the 
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FIQURE 5(a-d). For caption see facing page. 

same conclusion as found for normal Stokes flow. For this reason, Stokesian dynamic 
simulations employ the mobility formulation to calculate hydrodynamic interactions 
between widely separated particles (Brady & Bossis 1988). 

3. Results 
In this section we present the results for the hydrodynamic interactions at all 

separation distances between two cylinders in a thin viscous sheet. We demonstrate 
that our results smoothly approach both the far-field and lubrication solutions. The 
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FIGURE 5. Elements of the mobility matrix : (a)-(h) show the mobility functions u-h, 
respectively. 

lubrication terms are most obvious in the resistivity results because they are 
asymptotically large in that formulation. 

We evaluated the inner solution numerically and chose L,, to satisfy a 0.001 
relative convergence criterion for the forces and torques. The raw data from these 
calculations are available elsewhere (Bussell 1992). When p is large, convergence 
occurs with only one or two terms. However, when p is small, convergence requires 
many more : for example, 87 terms were used at E % 0.0075 to ensure convergence for 
all components. 

The mobility matrix results for various values of A are given in figures 4 and 5. 
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Figure 4 demonstrates that the uniformly valid approximation smoothly bridges the 
regime between the near-field and far-field solutions for component b.  The uniformly 
valid approximations result from the addition of the numerical near-field solution 
and the analytical far-field solution and subsequent subtraction of the common limit. 
Figure 5 contains the uniformly valid approximations for the components of the 
mobility matrix. Some components are independent of A because they do not depend 
on the matching operation. The far-field solutions appear in the graphs when they are 
non-zero. 

The resistivity results for various A appear in figure 6. We calculate the 
components of R from the results for M by using the relationships in Appendix A. 
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FIGURE 6. Elements of the resistivity matrix : (a)-(h) contain the resistivity functions A-H, 
respectively. In several of these graphs, minor discontinuities appear for A = 100 when switching 
between the near-field solution and the uniformly valid approximation at B = 2.0. 

We use the Uniformly valid approximation for M for E > 2 and the inner solution for 
E < 2.0. For small values of E ,  large values for the components of R are produced by 
small differences between components of M (see, for instance, the equations for A 
and B in Appendix A). The accuracy of this conversion is better using the near-field 
solution than the uniformly valid approximation. All scalars, except H ,  figure 6 ( h ) ,  
have lubrication terms which dominate the results when E < ?. The lubrication terms 
are O(&) for cases involving a squeezing motion and O(e-5) for cases involving a 
shearing motion. 
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FIGURE 7 .  Schematic detailing the coordinate system for the calculation 
of the lubrication results. 

The determination of the lubrication terms is analogous to the same problems for 
two spheres (Kim & Karrila 1991). The geometry is sketched in figure 7 .  For 
squeezing motion, the correct length and velocity scalings are z = aez, x = adz, and 
u, = Ua,, where each cylinder has equal and opposite velocity U. We formulate the 
lubrication problem in this way to ensure zero net force in the problem. This 
guarantees that the pressure and velocity fields decay. We are able to calculate 
components A and B of the resistivity matrix from these results by adding equal 
velocities to the two particles to make one particle stationary. The additional force 
introduced by this translation is small, O( l ) ,  and does not affect the calculated forces. 
Thus, we only need to impose the correct relative velocity between the two particles. 
Continuing with the scaling, u, = Ue-hx from continuity. Balancing the pressure 
with the leading-order term in the x-momentum equation gives p = eP2pUp/a. The 
leading-order results for the velocity and pressure fields are 

= a(ap/ax) [ z 2  - (1 + y ) 2 1  (27 ) 

and p = $( 1 +iz2}-2. (28) 

The force for the cylinders differs from the sphere case because F = h $ p  dx instead 
of 21t $pr dr. Since dx w Q ,  F w p x area w O ( d )  for the cylinder instead of O(e-l) for 
the sphere. 

For shearing motion, we again have z = aezand x = ucb. Now, however, u, = Va,, 
where V equals U or wa. Again, in order to avoid non-decaying solutions, we 
formulate the lubrication problems with zero net force. Thus, the translational 
problem, V = U ,  is solved with equal and opposite velocities on the two particles. 
From continuity, u, = Vek,, and from the z-momentum equation, p = dpVp/a. For 
this case, the leading-order results for the velocity and pressure fields are 

(29) 
and 

(30) 

where the value of c is determined by the boundary condition p+ 0 as Z+ co. The 
force for the cylinders is F = hp [ (aux/i3z) dx, compared to ,u [ (au,/az) dr for spheres. 
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FIGURE 8. The normalized relative diffusivity, Dre,/DO, between two cylinders 
as a function of gap width. 

Component Lubrication result 

A ;nLE-! 
B - @X"TT c "&-: 

D n q  
E - n q  
F n c z ,  
G 2"€0 
H O(1) 

TABLE I .  The lubrication results for the components of R 

Therefore, as in the case of squeezing motion, the differing area gives larger shear 
forces in the cylinder case, F z O(s-:), than in the sphere case. As mentioned earlier, 
H is independent of any lubrication contributions. This occurs because the torque 
generated by the force in the z-direction exactly cancels the torque generated by the 
force in the x-direction. This contrasts with the result for the analogous resistivity 
coefficient for spheres which has an O(1ns) singularity (Kim & Karrila 1991). The 
leading-order results for the components of R resulting from the lubrication analyses 
are given in table 1. 

A key application of the mobility results is the calculation of the various diffusion 
tensors for a system of two proteins. For example, the relative translational 
diffusivity for two proteins along their line of centres is given by 

2 ( ~ - b )  k, T 
Ph 

Drel = 9 

where k, is Boltzmann's constant and T is the absolute temperature. Figure 8 is the 
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graph of Drel/DO for h = 250, where Do is the relative diffusivity between two proteins 
at infinite separation distance. The values for D,,, are applicable to the calculation 
of reaction-diffusion problems without any preferred orientation of reaction. 
Furthermore, every diffusion coefficient for the two-protein system is directly 
proportional to combinations of the coefficients appearing in the mobility matrix. 

4. Discussion 
We have calculated the mobility and resistivity matrices for the motion of two 

equal-sized cylinders moving through a thin viscous sheet surrounded by lower- 
viscosity fluid. We have shown that the numerical results agree with the analytical 
results in the lubrication and far-field regimes. 

For instance, looking at  figure 5 ( b ) ,  we see that the hydrodynamic interactions are 
long range, operating on a lengthscale of O(h) or O(lO0) for protein-membrane 
systems. This same lengthscale dictates the distances a t  which Dre,, figure 8, differs 
significantly from the far-field result, Do. This is extremely long range compared to 
other important protein-protein interactions. For example, the range of potential 
energy interactions is typically O( 1) (Abney et al. 1989). 

The results that  we have obtained strongly suggest that  hydrodynamic 
interactions have a significant influence on motions and encounters between 
cylinders (proteins) constrained to a thin viscous film (membrane) between less 
viscous (aqueous) layers. These hydrodynamic interactions might help explain the 
discrepancies between experimental and theoretical values for the diffusion 
coefficients of integral membrane proteins a t  high protein concentrations (Saxton 
1987). We are in the process of using the two-particle hydrodynamic interaction 
results to calculate diffusion coefficients for proteins in membrane suspensions in a 
manner analogous to  the work of Batchelor (1983) and Russel & Gast (1986) for 
suspensions of spheres. We will then compare these results to the corresponding 
experimental data. Furthermore, these results have important implications for the 
calculation of diffusion-limited reaction rates between membrane-bound proteins. 
Because hydrodynamic interactions decrease the relative diffusivity between 
proteins even a t  low protein concentration, diffusion-limited reaction rates calculated 
with hydrodynamic interactions will be lower than those calculated ignoring them. 
It is possible that reactions previously considered as kinetically controlled, a 
conclusion reached with collision rates calculated without incorporation of 
hydrodynamic interactions, might actually be diffusion controlled. 

It is worth noting that the results that  we obtained in the lubrication regime 
probably are not universally applicable to all protein-membrane systems. Our near- 
field results are based on the assumptions of a continuum fluid between two rigid 
proteins and that the globular domains of the proteins can be ignored. One or both 
of these assumptions might break down as the gap width between the two proteins 
becomes small. I n  this regime, the globular domains of the proteins could signifi- 
cantly affect the protein interactions if their characteristic radius is larger than a, the 
radius of the cylindrical core. Even if the radius of the globular domains is smaller 
than a ,  and their effect on the hydrodynamic interactions is negligible, the rigid-body 
and continuum assumptions eventually break down. Proteins are likely to deform 
somewhat under the large lubrication forces generated as E + 0. This deformation 
could significantly alter the interactions between the proteins. Rigorous treatment of 
the hydrodynamic interactions between deformable cylindrical particles would 
require constitutive relations relating the deformation to the applied forces. Also, the 
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continuum model is probably not valid at the short distances a t  which lubrication 
begins to dominate. The radius of the lipid molecules making up the fluid can be as 
large as a the radius of the protein molecules for lipid molecules with a radius of 5 A. 
Theoretical (Bitsanis et al. 1990) and experimental (Israelachvili & McGuiggan 1988) 
studies indicate that the apparent viscous resistance of a three-dimensional fluid 
grows when the separation is comparable to the molecular diameter of the liquid. It 
would be interesting to pursue similar studies to determine the viscous resistance 
between deformable cylinders (proteins) when their gap width is comparable to the 
molecular scale of the individual liquid (lipid) molecules. The continuum lubrication 
results for rigid bodies, however, provide a reference state from which to compare 
deformation and non-continuum effects. 

We would like to thank A. S. Sangani for discussions concerning the twin-pole 
expansion technique. This work was supported by the National Science Foundation 
in the form of a Creativity Award (EID-8710373) to S. J. Bussell and a Presidential 
Young Investigator Award (BCS-8958632) to D. A. Hammer. 

Appendix A 
The relationships between the components of R and M are symmetric because 

both matrices have identical forms. We will write the relationships to convert R to 
M, but the reverse operators are obtained by simply switching the case of every 
label. The relationships are 

u = -A/ (B2-A2) ,  b = B / ( B 2 - A 2 ) ,  (A 1 %  b )  

J = [ (E2 - C2) ( H 2 -  G2) + 2(EH- CG) (F2 +D2) +4DF(CH-EG) + (F2-D2)2], (A 1 C) 

H(CF+DE) -G(EF + CD) -DF2 +D3 
J 

, d =  
- [ C ( H 2 - G 2 ) - 2 D F H + G ( F 2 + D 2 ) ]  

J 
C =  , 

(A I d ,  e )  

E(H2 - G2) - 2DFG + H ( F 2  + D 2 )  
J 

H(EF + DC) - G(CF + ED) -FD2 + F3 
J 3 f =  e =  > 

(A I f ,  9) 

H(E2 - C2) + 2DFC + E(F2 +D2) 

J 
, h =  

- [G(E2-  C2) + 2DFE + C(F2 +D2) ]  
J g =  

(A 1 h, i )  
where J is an intermediate. 

Appendix B 
The derivatives of G, are given in terms of the derivatives of In ( r ) ,  and those for 

G, are given in terms of the derivatives of r21n ( r ) .  In the formulae, r2 = x:+x: and 
n = p + q .  

Derivatives of G, : when q is even 
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and when q is odd 
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Derivatives of G,:  for n < 2 

for n 2 2 and q even 

(B 4) 
and for n 2 2 and q odd 

Appendix C 

THEOREM. Let u, be a function satisfying V4ur = 0 and be non-singular for r inside a 
circle at r(n). Then, 

The following theorem was taken from Sangani & Yao (1988). 

where a is the radius of the circle. In (C 1 )  and (C 2), the terms with a negative order 
of differentiation with respect to x1 must be set equal to zero. The integration is 
assumed to be along the circumference, i.e. for lr-R(n)l = a. 
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